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are the wave length, wave number of the light.  

Is called inclination(obliquity) factor, where    is the angle between the normal of the ds and 
the r direction.  

8.6.1  Fresnel Diffraction
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Fig. 15  Propagation of a 
spherical wave

When the dimension of the diffraction object is comparable with the distance,         ,between the 
light source and a small area element ds on the wave front around the diffraction object and the 
distance, r, between ds and the observation point, shown in figure 15, it’s Fresnel diffraction.  
The electrical field of the wave at point P is the sum of the electrical field of all wavelets 
emitted from the wave front determined by the diffraction object. 
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We divide the wave front onto number of angular regions rotating around the axis connecting 
the light source and point P.  The radii of the boundaries are                                                  and 
so forth.  These are the half-period zones.  Waves from all points within each zone are coherent 
and are in phase at P.

The contribution by each zone can be obtained by the use of figure 16.  The  area of ds is  
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Fig. 16 Propagation of a spherical wavefront

The contribution from zone j enclosed by the 
boundaries                                                       
is
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8- 21So the contribution from adjacent zones are out of phase and tend to cancel.  However, the 
inclination factor K makes a crucial difference.  As j increases,       increases and K decreases.  So 
that successive contributions do not completely cancel each other.  The sum of the electrical 
fields from all m zones at P when m is add  is
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When m is very large, Em becomes very small due to very small value of K.  E becomes  
E=|E1/2|.  So the electrical field generated by the entire unobstructed wavefront is 
approximately equal to one half the contribution from the first zone.

For a flat circular aperture or an obstacle, the radius of the mth zone on the wavefront , 
Rm, can be obtained from figure 17.
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Fig 17 Relation between Rm and ther 
parameters

8.6.2 Circular Aperture 

Envision a monochromatic spherical wave 
impinging on a screen containing a small hole with 
radius R as shown in figure 18.  At point P, the 
electrical field, according to (8.36) and (8.37) is

Fig 18 Circular aperture diffraction  
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For a small hole, m is small,                .  Then when 
m is even, E=0.  When m is odd, E=|E1|, which is 
twice the amplitude of the unobstructed wave.  The 
irradiance is four time as large.

mEE 1



8- 23

Fig. 19 (a) Zones in a circular aperture Fig. 19 (b) Diffraction patterns for 
circular apertures of increasing size

When the radius of the aperture increases from very small to large, the total number of zones, m, 
increases, which undergoes odd, even alternatively.  As a result, the irradiance at a point P on the 
axis will appear bright, dark alternatively.

To map the rest of the pattern, let’s consider observation points along a line perpendicular to the 
symmetric axis, as shown in figure 19(a).  Assume that at point P there are two complete zones 
filling the aperture and so E=0.  At P1, the second zone has been partially obscured and the third 
begins to show; E is no longer zero.  At P2, a good fraction of the second zone is hidden, 



8- 24whereas the third is even more evident.  Since the contributions from the 1st and the 3rd are in 
phase, P2 should be bright.  Further outwards, portion of successive zones are uncovered, the 
irradiance  undergoes a series of relative maxima and minima.  Slightly beyond the geometric 
shadow at P3, the first zone is only partially blocked, so the irradiance is still none zero.  
Further into the geometric shadow, the entire first zone is blocked and Em is negligible since m 
is large, the irradiance is indeed zero.

Figure  19(b) shows the diffraction patterns for a number of holes ranging in diameter from 
1mm to 4 mm as they appear on a screen 1m away.  From the top left and moving right, the 
first four holes are so small only a fraction of the first zone is uncovered.  So they are bright at 
the center.  The sixth hole uncovers the first and second zones and is therefore black at the 
center.  The ninth hole uncovers the first three zones and is once again bright at the center. The 
visible size on the screen is proportional to the size of the hole.  

Let’s now move the point P along the symmetry axis. When it’s very close to the aperture, m, 
the total number of zones becomes very large according to formula (8.39), resulting small Em

and so bright at P.  When P is moving away, m is getting small and undergoes alternative odd 
and even so the irradiance changes alternatively. When P is very far from the aperture, only 
small portion of first zone left.  So it’s always bright at P.  This is a Franhoffer diffraction.

Light source
P

Fig 20 Circular Obstacle 

8.6.3  Circular obstacle

When a circular obstacle is inserted between 
a light source and a screen P, suppose the 
first    zones are blocked off.  The electrical 
field at P is
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Now                              . There is a bright 
spot every where along the central axis 
except immediately behind the circular 
obstacle where              .  Figure 21 shows a 
diffraction pattern of a 1/8 inch bearing 
under the illumination of a He-Ne laser.  
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Fig 21 Diffraction pattern of a 
1/8 inch bearing

Fig 22 Zone plates, center is blocked 
on the left one.

8.6.4 Fresnel zone plate

When either all even or all odd zones are 
removed, the irradiance will increase 
tremendously at point P.  A screen that blocks 
light from every other half zone is called a zone 
plate as shown in figure 22.  Suppose a zone 
plate passes only the first 20 odd zones and 
obstructs the even zones.
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The irradiance is almost 
[20E1/(1/2E1)]2=1600 times as bright as the 
unobstructed wave.    The radii of each 
zone on a zone plate can be calculated by 
formula (8.39).


